Teorema Pythagoras
Profesor R. Smullyan
dalam bukunya 5000
SM dan Lainnya Filosofis Fantasi
bercerita tentang percobaan ia berlari di salah satu kelas geometrinya.
Dia menarik segitiga siku-siku pada papan dengan kotak pada sisi miring dan
kaki dan mengamati fakta alun-alun di sisi miring memiliki area lebih besar
dari salah satu dari dua kotak lainnya. Lalu ia bertanya,
"Seandainya ketiga kotak terbuat dari emas dipukuli, dan Anda ditawarkan
baik persegi satu besar atau dua kotak kecil. Yang akan Anda pilih?"
Yang cukup menarik, sekitar separuh kelas memilih alun-alun satu besar dan
setengah untuk dua kotak kecil.
Kedua kelompok sama-sama kagum ketika diberitahu bahwa itu akan membuat
perbedaan.
The Pythagoras
(atau Pythagoras ') Teorema adalah pernyataan bahwa jumlah (bidang)
dua kotak kecil sama (daerah) yang besar.
Dalam istilah aljabar, a ² + b ² = c ² di mana c
adalah sisi miring, sementara a dan b adalah kaki segitiga.
Teorema ini penting mendasar dalam Euclidean Geometri mana ia
berfungsi sebagai dasar untuk definisi jarak antara dua titik.
Ini sangat dasar dan terkenal itu, saya yakin, siapapun yang mengambil kelas
geometri di sekolah tinggi tidak bisa gagal untuk mengingatnya lama setelah
gagasan matematika lain mendapatkan secara menyeluruh terlupakan.
Di bawah ini adalah kumpulan 92 pendekatan untuk membuktikan
teorema tersebut. Banyak bukti yang
disertai dengan ilustrasi Jawa interaktif.
Ucapan
Dalam
semua kemungkinan, Loomis menarik inspirasi dari serangkaian artikel pendek
dalam The Matematika Amerika Bulanan diterbitkan oleh BF Yanney dan
Calderhead JA pada 1896-1899.
Menghitung kemungkinan variasi dalam perhitungan berasal dari konfigurasi
geometri yang sama, jumlah potensi bukti ada tumbuh ke dalam ribuan.
Sebagai contoh, penulis sebanyak 45 bukti-bukti berdasarkan diagram bukti #
6 dan hampir sebanyak berdasarkan diagram #
19 di bawah ini. Saya akan memberikan
contoh pendekatan mereka dalam bukti #
56 . (Dalam semua, ada 100
"singkatan" bukti-bukti.)
Saya harus mengakui
bahwa, mengenai adanya bukti trigonometri, saya telah berpihak dengan dengan
Elisa Loomis sampai sangat baru-baru ini, yaitu, sampai saya diberitahu
tentang Bukti
# 84 .
Dalam istilah trigonometri, teorema Pythagoras menyatakan bahwa
dalam segitiga ABC, kesetaraan dosa ² A + sin ² B = 1 adalah setara dengan
sudut pada yang benar C. Sebuah
simetris pernyataan lagi adalah bahwa ΔABC
benar iff dosa ² A dosa + ² B + sin ² C = 2 .
Dengan hukum
sinus , yang terakhir adalah
setara dengan ² + b ² + c ² = 2d ², di mana d adalah diameter circumcircle
tersebut. Bentuk lain dari
properti yang sama adalah cos ² A + cos ² B + cos ² C = 1 yang aku
suka bahkan lebih .
Bukti #
1
Hal ini mungkin yang
paling terkenal dari semua bukti dari proposisi Pythagoras. Ini yang pertama dari dua Euclid bukti (I.47). Konfigurasi yang mendasari menjadi dikenal dengan berbagai
nama, di Bride
Ketua kemungkinan yang paling
populer.
Buktinya telah
diilustrasikan oleh pemenang penghargaan Java applet yang ditulis oleh Jim
Morey. Aku memasukkannya pada halaman
terpisah dengan jenis izin Jim.
Buktinya di bawah ini adalah versi singkat sedikit dari bukti Euclidean asli
seperti yang muncul dalam Thomas
Heath terjemahan Sir .
Pertama-tama, ΔABF =
ΔAEC oleh SAS . Hal ini karena, AE = AB, AF = AC, dan
ΔABF memiliki basis AF dan ketinggian dari B sama dengan AC. Wilayahnya karena itu sama dengan setengah dari
persegi pada sisi AC. Di sisi lain,
ΔAEC telah AE dan ketinggian dari C sebesar AM, di mana M adalah titik
persimpangan AB dengan garis CL sejajar dengan AE.
Dengan demikian daerah ΔAEC sama dengan setengah dari AELM persegi panjang. Yang mengatakan
bahwa AC ² daerah alun-alun di sisi AC sama dengan daerah AELM persegi
panjang.
Demikian pula, wilayah SM ² alun-alun di sisi SM sama bahwa
BMLD persegi panjang.
Akhirnya, dua persegi panjang AELM dan BMLD membentuk persegi di sisi miring
AB.
Konfigurasi di tangan mengakui berbagai variasi. BF Yanney dan JA Calderhead (Am Math
Bulanan, v.4, n 6 / 7, (1987), 168-170 beberapa bukti diterbitkan
berdasarkan diagram berikut
Beberapa sifat dari konfigurasi ini telah dibuktikan di
Ketua Bride dan lain-lain khusus Properties
dari Angka dalam Euclid I.47
halaman.
Bukti
# 2
Kita
mulai dengan dua kotak dengan sisi dan b yang masing-masing, sisi
ditempatkan oleh sisi. Luas total dari dua kotak ² a
+ b ².
Konstruksi tidak mulai dengan segitiga, tapi sekarang kita
menggambar dua dari mereka, baik dengan sisi a dan sisi miring c
dan b. Perhatikan bahwa segmen
umum untuk dua kotak telah dihapus.
Pada titik ini, maka kami memiliki dua segitiga dan bentuk tampak aneh.
Sebagai langkah terakhir, kita memutar segitiga 90 °,
masing-masing sekitar titik puncaknya. Yang benar adalah diputar searah jarum jam sedangkan
segitiga kiri diputar berlawanan.
Jelas bentuk yang dihasilkan adalah persegi dengan sisi c dan area c ².
Bukti
tersebut muncul dalam inkarnasi
dinamis .
(A
varian dari bukti ini ditemukan dalam sebuah naskah yang masih ada oleh ibn
Thabit qurra terletak di perpustakaan Musium Aya Sofya di Turki, didaftarkan
dengan nomor 4832 Matematika. [R. Shloming, Thabit ibn qurra dan
Teorema Pythagoras, Guru 63 ( Oktober, 1970), 519-528] adalah ibn
qurra's. diagram mirip dengan yang di bukti
# 27 .. Bukti itu sendiri
dimulai dengan mencatat adanya hak yang sama empat segitiga sekitar aneh
mencari bentuk seperti pada saat bukti # 2 ini empat segitiga sesuai
berpasangan dan berakhir dengan posisi mulai dari yang diputar segitiga dalam
pembuktian suatu saat. sama Konfigurasi ini dapat diamati dalam bukti
oleh tessellation .)
Bukti
# 3
Sekarang kita mulai dengan empat salinan dari segitiga yang
sama. Tiga dari ini telah diputar
90 °, 180 °, dan 270 °, masing-masing. Masing-masing memiliki wilayah ab
/ 2.
Mari kita menempatkan mereka bersama tanpa rotasi tambahan sehingga mereka
membentuk persegi dengan c sisi.
persegi ini memiliki
lubang persegi dengan sisi (a - b)). Gabungkan nya up area (a - b
² dan 2 ab, daerah dari empat segitiga (4 · ab / 2), kita
mendapatkan
Bukti
# 4
Pendekatan keempat
dimulai dengan segitiga sama empat, kecuali bahwa, kali ini, mereka bergabung
untuk membentuk sebuah persegi dengan sisi (a + b) dan sebuah lubang
dengan c sisi. Kita dapat menghitung luas
persegi besar dalam dua cara.
Demikian
menyederhanakan yang kita dapatkan identitas diperlukan.
Sebuah
bukti yang menggabungkan ini dengan bukti
# 3 dikreditkan ke
matematikawan abad ke Hindu 12 Bhaskara (Bhaskara II):
Di
sini kita menambahkan dua identitas
yang memberikan
Yang
terakhir ini hanya membutuhkan dibagi dengan 2. Ini
adalah bukti aljabar # 36 di 'koleksi
Loomis . Its varian, khususnya
diterapkan pada segitiga
3-4-5 , telah ditampilkan
dalam Chou Pei Cina klasik Suan Ching tanggal di suatu tempat
antara 300 SM dan 200 M dan yang Loomis mengacu sebagai bukti 253.
Bukti
# 5
Ini bukti, ditemukan oleh Presiden JA Garfield pada tahun 1876
[ Pappas ], adalah variasi pada satu sebelumnya. Tapi kali
ini kita tidak menarik kotak sama sekali. Kuncinya
sekarang adalah rumus untuk daerah dari trapesium - jumlah setengah dari
dasar kali ketinggian - (a + b) / 2 · (a + b). Melihat pada
gambar lain dengan cara, ini juga dapat dihitung sebagai jumlah wilayah di
tiga segitiga - / 2 + ab / 2 + c ° C / 2. ab
Seperti sebelumnya, penyederhanaan menghasilkan ² + b ² = c ².
Dua salinan dari trapesium sama dapat dikombinasikan dengan dua
cara dengan melampirkan mereka sepanjang sisi miring dari trapesium tersebut.
Satu mengarah ke #
bukti 4 , yang lain untuk bukti
# 52 .
Bukti
# 6
Kita
mulai dengan segitiga siku-siku asli, sekarang dilambangkan ABC, dan hanya
perlu satu tambahan membangun - pada ketinggian AD. The segitiga ABC,
DBA, dan DAC mirip yang mengarah ke dua rasio:
Ditulis cara lain ini menjadi
Menyimpulkan kita
mendapatkan
Dalam bentuk yang sedikit berbeda, bukti ini muncul di Majalah
Matematika, 33 (Maret, 1950), hal 210, di bagian Singkat Matematika, lihat Matematika
Singkat , oleh CW Trigg.
Mengambil AB = a, AC = b, BC = c dan yang menunjukkan BD = x,
kita dapatkan seperti di atas
yang mungkin lebih transparan mengarah pada identitas yang
sama.
Dalam korespondensi pribadi, Dr Perancis Dacar, Ljubljana,
Slovenia, telah menyarankan bahwa diagram di sebelah kanan dapat melayani dua
tujuan. Pertama, memberikan
sebuah representasi grafis tambahan untuk bukti sekarang # 6. Selain itu, menyoroti
hubungan terakhir untuk bukti
# 1 .
RM Mentock telah
mengamati bahwa sedikit trik membuat bukti lebih ringkas. Dalam
notasi umum, c = b cos A + B. cos Tapi, dari segitiga asli, sangat mudah
untuk melihat bahwa cos A = b / c dan cos B = a / c jadi c = b (b / c) + (a /
c): ini. varian segera membawa Facebook pertanyaan kita mendapatkan dengan
cara ini bukti trigonometri? Saya tidak berpikir begitu, walaupun fungsi trigonometri
(kosinus) membuat penampilan menonjol di sini. Rasio
dari dua panjang dalam gambar adalah suatu bentuk
properti yang berarti bahwa hal
itu tetap tetap dalam melewati antara angka yang sama, yaitu, tokoh dari
bentuk yang sama.
Bahwa rasio tertentu yang digunakan dalam bukti terjadi untuk memainkan peran
yang cukup penting dalam trigonometri dan, lebih umum, dalam matematika,
sehingga pantas menjadi notasi khusus sendiri, tidak menyebabkan bukti
tergantung pada notasi itu. (Namun, periksa Bukti
84 di mana identitas trigonometri digunakan dalam cara yang
signifikan.)
Akhirnya, harus disebutkan bahwa konfigurasi dieksploitasi
dalam bukti ini hanya kasus tertentu dari satu dari bukti berikutnya - bukti
Euclid kedua dan kurang dikenal dari dalil Pythagoras.
Halaman terpisah dikhususkan untuk bukti oleh argumen
kesamaan .
Bukti
# 7
Bukti berikutnya adalah
diambil verbatim dari Euclid VI.31 dalam terjemahan oleh Sir Thomas L. Heath.
Para G. besar Polya
analisis dalam induksi dan Analogi di Matematika (II.5) yang merupakan
bacaan yang direkomendasikan untuk siswa dan guru Matematika.
Dalam
segitiga siku-siku-siku sosok di sisi subtending sudut yang tepat sama dengan
dan sama dijelaskan angka serupa pada sisi yang mengandung sudut yang tepat.
Misalkan ABC segitiga
siku-siku mempunyai hak BAC sudut, aku mengatakan bahwa gambar di SM adalah
sama dengan angka yang sama dan sama dijelaskan di BA, AC.
Biarkan AD ditarik tegak lurus. Kemudian karena, di segitiga siku-siku ABC, AD telah
ditarik dari sudut kanan di A tegak lurus dasar SM, segitiga ABD, ADC
berdampingan dengan tegak lurus sama baik untuk seluruh ABC dan satu sama
lain VI.8 [ ].
Dan, karena ABC ini
mirip dengan ABD, oleh karena itu, CB adalah untuk BA begitu juga AB untuk BD
[VI.Def.1].
Dan, sejak tiga garis
lurus yang proporsional, sebagai yang pertama adalah yang ketiga, sehingga
adalah sosok pada pertama untuk angka yang sama dan sama dijelaskan pada
[VI.19] kedua. Oleh karena itu, CB adalah untuk BD, jadi adalah tokoh pada CB
dengan angka yang sama dan sama dijelaskan di BA.
Untuk alasan yang sama juga, seperti BC ke CD, begitu pula
gambar di SM dengan yang di CA, sehingga, di samping itu, sebagai SM adalah
untuk BD, DC, jadi adalah tokoh di SM dengan angka yang sama dan sama
dijelaskan pada BA, AC.
Tapi SM sama dengan BD, DC, sehingga gambar di BC juga sama
dengan angka yang sama dan sama dijelaskan di BA, AC.
Oleh karena itu dll QED
Pengakuan
Saya mendapat apresiasi
nyata dari bukti ini hanya setelah membaca buku oleh Polya saya sebutkan
diatas. Saya berharap bahwa Java
applet akan membantu Anda
mendapatkan ke bawah ini adalah bukti yang luar biasa. Perhatikan
bahwa pernyataan benar-benar terbukti jauh lebih umum dari teorema seperti
itu diketahui secara umum. ( diskusi
lain melihat VI.31 dari sudut
yang berbeda sedikit.)
Bukti
# 8
Bermain dengan applet yang menunjukkan bukti Euclid (# 7), saya telah
menemukan satu lagi yang, walaupun jelek, melayani tujuan tetap.
Jadi dimulai dengan 1 segitiga kita menambahkan tiga lagi dalam
cara yang disarankan dalam bukti # 7: serupa dan sama dijelaskan segitiga 2,
3, dan 4. Berasal beberapa rasio seperti yang dilakukan dalam bukti # 6
kita sampai pada sisi panjang seperti yang digambarkan pada diagram. Sekarang, mungkin untuk melihat bentuk akhir dalam
dua cara:
Menyamakan daerah menyebabkan
Menyederhanakan kita
mendapatkan
Ucapan
Di
belakang, ada bukti sederhana.
Lihatlah persegi panjang (1 + 3 + 4). Sisi panjang adalah, di satu sisi, c
polos, sedangkan, di sisi lain, it's a ² / c + b ² / c dan kita lagi memiliki
identitas yang sama.
Vladimir Nikolin dari Serbia menyediakan sebuah ilustrasi yang
indah:
Bukti
# 9
bukti lainnya berasal
dari penyusunan kembali potongan kaku, seperti banyak bukti
# 2 . Hal ini membuat bagian aljabar bukti
# 4 benar-benar berlebihan. Tidak ada banyak orang bisa menambah dua gambar.
(Terima kasih tulus saya pergi ke Monty
Phister untuk jenis izin untuk
menggunakan grafis.)
Ada simulasi
interaktif untuk mainan dengan. Dan satu
lagi yang jelas menunjukkan
hubungannya dengan bukti #
24 atau #
69 .
Loomis (hal. 49-50) menyebutkan bahwa bukti "ini dirancang oleh
Maurice Laisnez, seorang anak sekolah tinggi, di Senior High School-Junior
South Bend, Ind, dan dikirim ke saya, 16 Mei 1939, oleh-Nya kelas guru,
Wilson Thornton. "
Buktinya telah dipublikasikan oleh Rufus Ishak di Matematika
Magazine, Vol.
48 (1975), hal 198.
Sebuah berbeda
rearragement sedikit mengarah pada diseksi berengsel digambarkan oleh Java
applet .
Bukti
# 10
Ini
dan 3 berikutnya bukti datang dari [ PWW ].
Segitiga di Bukti # 3 mungkin diatur kembali dalam cara lain yang membuat
identitas Pythagoras jelas.
(Sebuah diagram mengelusidasi lebih di sebelah kanan adalah baik dikirim
kepada saya oleh Monty
Phister a. mengakui bukti
berengsel suatu diseksi digambarkan oleh Java
applet .)
Dua buah dapat digabungkan menjadi satu.
Hasilnya muncul dalam sebuah buku Sanpo 1830 Shinsyo - New
Matematika - oleh Chiba Tanehide (1775-1849), [H. Fukagawa, Rothman A., Matematika
Suci: Geometri Temple Jepang ,
Princeton University Press, 2008, hal 83].
Bukti
# 11
Buatlah lingkaran dengan c radius dan segitiga siku-siku dengan
sisi a dan b seperti yang ditunjukkan.
Dalam situasi ini, seseorang mungkin menerapkan salah satu dari beberapa
fakta terkenal. Sebagai contoh, dalam
diagram tiga poin F, G, H terletak pada bentuk lingkaran lain segitiga
siku-siku dengan ketinggian FK panjang a. GH miring adalah terbelah dua bagian: (c + b) dan (c - b).
Jadi, sebagai Bukti
# 6 , kita mendapatkan ² a =
(c + b) (c - b) ² c = - b ².
[ Loomis , # 53] atribut konstruksi ini ke Leibniz besar, tetapi
memperpanjang bukti tentang tiga kali lipat dengan berkelok-kelok dan
derivasi sesat.
BF Yanney dan JA Calderhead (Am Math Bulanan, v.3, n. 12
(1896), 299-300) menawarkan rute yang agak berbeda. Bayangkan FK diperluas ke F persimpangan kedua dengan
lingkaran. Kemudian, oleh Chords
berpotongan teorema, · KF '= FK GK ·
KH, dengan implikasi yang sama.
Bukti
# 12
bukti Ini adalah variasi pada # 1, salah satu bukti yang asli
Euclid. Di bagian 1,2, dan 3, dua
kotak kecil yang dicukur terhadap satu sama lain seperti bahwa area yang
diarsir total tetap tidak berubah (dan sama dengan ² + b ².) Pada bagian 3,
panjang bagian vertikal perbatasan daerah berarsir's persis c karena kedua
segitiga sisa adalah salinan yang asli. Ini
berarti satu Mei geser di bawah area yang diarsir seperti pada bagian 4. Dari sini Teorema Pythagoras berikut mudah.
(Bukti ini dapat ditemukan di H. tetesan mata, Dalam
Matematika Lingkaran , MAA 2002,, hlm 74-75)
Bukti
# 13
Dalam diagram segitiga
sama ada beberapa Kita berturut-turut memiliki (abc, a'b'c ', a'x, dan b'y.)
Bukti
# 14
Hal
ini dibuktikan dengan HEDudeney (1917) dimulai dengan memotong persegi di
sisi yang lebih besar menjadi empat bagian yang kemudian digabungkan dengan
yang lebih kecil untuk membentuk persegi dibangun di sisi miring.
Greg
Frederickson dari Purdue University,
penulis buku yang benar-benar menerangi, pembedahan:
Plane & Fancy (Cambridge University
Press, 1997), menunjukkan ketidak-tepatan sejarah:
Bill
Casselman dari University of British Columbia detik itu informasi Greg. Tambang
berasal dari Bukti Tanpa Kata oleh RBNelsen (MAA, 1993).
Buktinya memiliki versi
dinamis .
Bukti
# 15
Ini bukti
yang luar biasa dengan KO Friedrichs
adalah generalisasi dari sebelumnya oleh Dudeney (atau oleh Perigal, seperti
di atas).
Ini memang umum. Ini umum dalam arti bahwa berbagai bukti tak terbatas
geometris tertentu mungkin berasal dari itu. (Roger Nelsen ascribes [
PWWII , p 3] ini adalah bukti untuk Annairizi Arab (ca. 900 AD))
Suatu bagus varian terutama oleh Olof Hanner muncul pada halaman
terpisah .
Bukti
# 16
bukti
ini dianggap berasal dari Leonardo da Vinci (1452-1519) [ tetesan
mata ]. Segiempat Abhi, JHBC, ADGC, dan EDGF semua sama. (Ini mengikuti dari
pengamatan bahwa sudut ABH adalah 45 °. Hal ini karena ABC siku-siku,
sehingga pusat O dari ACJI persegi terletak pada lingkaran segitiga ABC
circumscribing Jelas,. Sudut ABO adalah 45 °.) Sekarang, Area (Abhi) + Area
(JHBC) = Area (ADGC) + Area (EDGF) Setiap berisi. penjumlahan dua bidang
segitiga sama dengan ABC (IJH atau BEF) menghapus yang satu memperoleh
Teorema Pythagoras.
Raja
Daud memodifikasi argumen agak
panjang samping dari segi enam adalah identik. Sudut pada P (sudut sudut + tepat
antara a & c) adalah identik.
Sudut di Q (sudut kanan + sudut antara b & c) adalah identik.
Oleh karena itu keempat segi enam adalah identik.
Bukti
# 17
bukti
ini muncul dalam Kitab IV Matematika Koleksi Pappus dari Alexandria
(AD 300 ca) [ tetesan
mata , Pappas ]. Ini generalizes Teorema Pythagoras dalam dua cara:
segitiga ABC tidak perlu siku-siku dan bentuk dibangun di sisi-sisinya adalah
jajaran genjang sewenang-wenang, bukan kotak. Jadi membangun jajaran genjang Cade dan CBFG pada AC sisi dan
masing-masing, SM. Biarkan FG DE dan
bertemu di H dan menarik paralel AL dan BM dan sama dengan HC. Kemudian Area (ABML) = Area
(Cade) + Area (CBFG),. Memang dengan transformasi sheering sudah digunakan
dalam bukti # 1 dan # 12, Area (Cade) = Area (CAUH) = Area (SLAR) dan juga
Daerah ( CBFG) = Area (CBVH) = Area (BRMt),. Sekarang hanya menambahkan
sampai apa yang sama.
Sebuah ilustrasi dinamis
tersedia di
tempat lain .
Bukti
# 18
Ini adalah generalisasi yang tidak memerlukan sudut kanan. Ini
karena Thabit ibn qurra (836-901) [ tetesan
mata ].
Jika sudut CAB, AC'B dan AB'C adalah sama maka AC ² + AB ² = BC (CB '+ BC'),.
Memang segitiga ABC, AC'B dan AB'C sama. Dengan demikian kita
memiliki AB / BC = BC / AB dan AC / CB '= BC / AC yang segera mengarah ke
identitas yang diperlukan. Dalam hal sudut A adalah benar, teorema mengurangi ke
proposisi Pythagoras dan bukti # 6.
Diagram yang sama
dimanfaatkan dengan cara yang berbeda oleh EW
Dijkstra yang berkonsentrasi pada
perbandingan SM dengan jumlah CB '+ BC'.
Bukti
# 19
bukti Ini adalah variasi
pada #
6 . Di sisi kecil AB
menambahkan segitiga siku-siku ABD mirip dengan ABC.
Kemudian, secara alami, DBC mirip dengan dua lainnya. Dari Daerah (ABD) + Area (ABC) = Area (DBC),
AD = AB ² / AC dan BD = AB · BC / AC kita peroleh (AB ² / AC) · AB + AB · AC
= (AB · BC / AC) · SM AC. Membagi oleh AB / mengarah ke AB ² + AC ² = BC ².
Bukti
# 20
Yang satu ini adalah
persilangan antara #
7 dan #
19 . Buatlah
segitiga ABC, BCA, dan ACB 'mirip dengan ABC , seperti dalam diagram. Dengan konstruksi, ΔABC = ΔA'BC,. Selain itu segitiga ABB
'dan ABC' juga sama. Jadi
kita menyimpulkan bahwa Area (A'BC) + Area (AB'C) = Area (ABC). Dari kesamaan
segitiga yang kita dapatkan seperti sebelumnya AC ² = B'C / BC dan BC '= AC ·
AB / BC. Menyatukan semuanya menghasilkan AC · BC + (AC ² / BC) · AC = AB °
(AC · AB / BC) yang sama
Bukti
# 21
Berikut adalah kutipan dari sebuah surat oleh Dr Scott Brodie
dari Mount Sinai School of Medicine, NY yang mengirimi saya beberapa bukti
dari teorema yang tepat dan generalisasi terhadap Hukum cosinus:
Bukti
# 22
Berikut ini adalah bukti kedua dari surat Dr Scott Brodie's.
Dr. Brodie also created a
Geometer's
SketchPad file to illustrate this
proof.
(This proof has been
published as number XXIV in a collection of proofs by BF Yanney and JA
Calderhead in Am Math Monthly , v. 4, n. 1 (1897), pp. 11-12.)
Proof
#23
Another
proof is based on the Heron's
formula. (In passing, with the help of the formula I displayed the areas in
the applet that illustrates Proof
#7). This is a rather convoluted way to prove the Pythagorean Theorem that,
nonetheless reflects on the centrality of the Theorem in the geometry of the
plane. (A shorter and a more transparent application of Heron's formula is
the basis of proof
#75 .)
Proof #24
[ Swetz ] ascribes this proof to abu' l'Hasan Thâbit ibn Qurra Marwân
al'Harrani (826-901). It's the second of the proofs given by Thâbit ibn
Qurra. The first one is essentially the #2 above.
The proof resembles part
3 from proof #12. ΔABC = ΔFLC = ΔFMC = ΔBED = ΔAGH = ΔFGE. On one hand, the
area of the shape ABDFH equals AC² + BC² + Area( ΔABC + ΔFMC + ΔFLC). On the
other hand, Area(ABDFH) = AB² + Area( ΔBED + ΔFGE + ΔAGH).
Thâbit ibn Qurra's admits
a natural generalization to a proof
of the Law of Cosines .
A dynamic
illustration of ibn Qurra's proof is
also available.
This is an
"unfolded" variant of the above proof. Two pentagonal regions - the
red and the blue - are obviously equal and leave the same area upon removal
of three equal triangles from each.
The proof is popularized
by Monty
Phister , author of the
inimitable Gnarly Math CD-ROM.
Floor van Lamoen has
gracefully pointed me to an earlier source. Eduard Douwes Dekker, one of the
most famous Dutch authors, published in 1888 under the pseudonym of Multatuli
a proof accompanied by the following diagram.
Scott Brodie pointed to
the obvious relation of this proof to #
9 . It is the same configuration but short of one triangle.
Proof #25
BFYanney (1903, [ Swetz ]) gave a proof using the "shearing argument" also
employed in the Proofs #1 and #12. Successively, areas of LMOA, LKCA, and
ACDE (which is AC²) are equal as are the areas of HMOB, HKCB, and HKDF (which
is BC²). BC = DF. Thus AC² + BC² = Area(LMOA) + Area(HMOB) = Area(ABHL) =
AB².
Proof #26
This proof I discovered
at the site
maintained by Bill Casselman where
it is presented by a Java applet.
Proof #27
The same pieces as in
proof #26 may be rearranged in yet another manner.
This dissection is often
attributed to the 17 th century Dutch mathematician Frans van
Schooten. [ Frederickson , p. 35] considers it as a hinged variant of one by ibn Qurra,
see the note in parentheses following proof
#2 . Dr. France Dacar from Slovenia has pointed out that this same
diagram is easily explained with a tessellation in proof
#15 . As a matter of fact,
it may be better explained by a different
tessellation . (I thank Douglas
Rogers for setting this straight for me.)
The configuration at hand
admits numerous variations. BF Yanney and JA Calderhead ( Am Math Monthly
, v. 6, n. 2 (1899), 33-34) published several proofs based on the following
diagrams (multiple proofs per diagram at that)
Proof #28
Melissa Menjalankan dari
MathForum telah berbaik hati mengirimkan saya link (yang sejak
menghilang) ke halaman oleh Donald B. Wagner, seorang ahli sejarah ilmu
pengetahuan dan teknologi di Cina.
Dr Wagner tampaknya memiliki bukti direkonstruksi oleh Liu Hui (AD abad
ketiga). Namun (lihat di
bawah), ada keraguan serius kepengarangan buktinya.
Elisa
Loomis mengutip ini sebagai
bukti geometris # 28 dengan komentar berikut:
a.
Benjir von Gutheil, oberlehrer di Nurnberg, Jerman,
menghasilkan bukti atas. Dia meninggal di parit di Perancis,
1914.
Jadi menulis J. Adams, Agustus 1933.
b.
Mari kita menyebutnya B. von Gutheil Perang Dunia Bukti.
Dilihat oleh Sweet
Tanah film, sikap memaafkan
seperti terhadap seorang rekan Jerman tidak mungkin sudah umum di dekat waktu
Perang Dunia I. Ini mungkin lebih dijaga pada tahun 1930 selama naik ke
kekuasaan Nazi di Jerman.
(Saya berterima kasih kepada D. Rogers untuk membawa referensi
untuk 'koleksi
Loomis saya. perhatian terhadap
Dia juga menyatakan pemesanan sebagai menganggap atribusi bukti untuk Liu Hui
dan menelusuri tampilan awal Karl Julius Walther Lietzmann's Geometrische
aufgabensamming Ausgabe B: Realanstalten fuer , yang diterbitkan di
Leipzig oleh Teubner tahun 1916,. Menariknya bukti belum termasuk dalam
sebelumnya Der Lietzmann Pythagoreische's Lehrsatz diterbitkan
pada tahun 1912.)
Bukti
# 29
Sebuah bukti
mekanis dari teorema berhak
memperoleh halaman sendiri.
Berkaitan dengan bukti
bahwa adalah halaman "Extra-geometris"
bukti Teorema Pythagoras oleh Scott Brodie
Bukti
# 30
bukti
ini saya temukan di 's sekuel R. Nelsen Bukti
Tanpa Kata II . (Itu
karena-sung Park Poo dan pada awalnya diterbitkan di Matematika
Magazine, Desember 1999 ). Dimulai dengan salah satu sisi segitiga
siku-siku, membangun 4 kanan segitiga sama kaki kongruen dengan hypotenuses
dari dua berikutnya tegak lurus dan Apeks jauh dari segitiga yang diberikan.
Sisi miring dari segitiga pertama ini (merah dalam diagram) harus bertepatan
dengan salah satu sisi.
Para
Apeks dari segitiga sama kaki membentuk persegi dengan sisi sama dengan sisi
miring segitiga yang diberikan. Para hypotenuses dari segitiga memotong sisi persegi di
titik-titik tengah mereka.
Sehingga tampaknya ada 4 pasang segitiga sama (salah satu dari pasangan dalam
hijau). Salah satu segitiga
dalam pasangan berada di dalam alun-alun, yang lain di luar. Biarkan sisi segitiga asli menjadi a, b, c
(miring). Jika segitiga
sama kaki pertama dibangun pada sisi b, maka masing-masing memiliki luas b ²
/ 4. Kami
mendapatkan
Ada yang dinamis ilustrasi dan lain diagram yang menunjukkan bagaimana untuk membedah dua
kotak kecil dan mengatur ulang mereka ke dalam yang besar.
Diagram ini juga
memiliki varian
yang dinamis .
Bukti
# 31
Mengingat ΔABC kanan, biarkan, seperti biasa, menandakan
panjang sisi BC, AC dan bahwa dari sisi miring sebagai a, b, dan c,
masing-masing. Tegak kotak di sisi BC dan AC seperti
pada diagram. Menurut SAS , segitiga ABC dan pcq adalah sama, sehingga ∠ QPC = ∠ A. Misalkan M adalah titik tengah sisi miring. Mendenotasikan persimpangan MC dan PQ sebagai 's
menunjukkan bahwa MR Mari R. PQ.
Median ke sisi miring sama dengan setengah dari yang terakhir. Oleh karena itu, ΔCMB adalah sama kaki dan ∠ = ∠ MBC MCB MCB. Tapi kita juga memiliki ∠ PCR = ∠. Dari sini dan ∠ QPC = ∠ A itu berikut bahwa sudut
CRP benar, atau MR PQ.
Dengan persiapan kita beralih ke segitiga MCP dan MCQ. Kami mengevaluasi daerah mereka dalam dua cara berbeda:
Salah satu tangan, yang ketinggian dari M ke PC sama AC / 2 = b
/ 2.
Tapi juga PC = b. Oleh karena itu, Area (ΔMCP) = b ² / 4. Di sisi lain, Area
(ΔMCP) = CM · PR / 2 = ° C PR / 4,. Demikian pula Luas (ΔMCQ) = a ² / 4 dan
juga Area (ΔMCQ) = CM · RQ / 2 = RQ ° C / 4.
Kita mungkin jumlah dua
identitas: a ² / 4 + b ² / 4 = ° C PR / 4 + RQ ° C / 4, atau ² / 4 + b ² / 4
= c c ° / 4.
(Terima kasih saya sampaikan kepada Lantai
van Lamoen yang membawa ini adalah
bukti perhatian saya -. Ternyata di matematika Belanda Pythagoras
sebuah majalah untuk anak sekolah - Desember, masalah 1998 di sebuah artikel
oleh Bruno Ernst. di Buktinya adalah disebabkan Amerika High School siswa
dari tahun 1938 dengan nama Ann Condit adalah The. bukti dimasukkan sebagai bukti
geometris 68 di 'koleksi
Loomis , hal 140.)
Bukti
# 32
Biarkan ABC dan DEF
adalah dua segitiga siku-siku kongruen seperti bahwa B terletak pada DE dan
A, F, C, E adalah kesegarisan =. BC EF = a, AC = DF = b, AB = DE = c. Jelas, AB DE
cara. Hitunglah luas di berbagai ΔADE dua.
Area (ΔADE) = AB · DE / 2 = c ² / 2 dan juga Daerah (ΔADE) = DF
· AE / 2 = b ° AE / 2 =. AE = AC + CE b + CE. CE dapat ditemukan dari
segitiga sama SM dan DFE: CE = BC · FE / DF = a ° a / b. Puting hal
bersama-sama kita mendapatkan
(Bukti
ini merupakan penyederhanaan dari salah satu bukti oleh Michelle Watkins,
seorang mahasiswa di University of North Florida, yang muncul di Matematika
1997/98, Spectrum v30, n3, 53-54.)
Douglas Rogers mengamati bahwa diagram yang sama dapat
diperlakukan berbeda:
Dua berikutnya bukti-bukti telah menemani pesan berikut dari
Shai Simonson, Profesor di Stonehill College di Cambridge, MA:
Bukti
# 33
Bukti
# 34
Bukti
# 35
Cracked Domino - a proof
by Mario Pacek (aka Pakoslaw Gwizdalski) - also requires some thought.
The proof sent via email
was accompanied by the following message:
The manner in which the
pieces are combined may well be original. The dissection itself is well known
(see Proofs 26 and 27 ) and is described in Frederickson's book, p. 29.
It's remarked there that B. Brodie (1884) observed that the dissection like
that also applies to similar rectangles. The dissection is also a particular
instance of the superposition proof by KOFriedrichs .
Proof
#36
This
proof is due to JE Böttcher
and has been quoted by Nelsen ( Proofs Without Words II , p. 6).
I think cracking this
proof without words is a good exercise for middle or high school geometry
class.
SK Stein, ( Mathematics:
The Man-Made Universe , Dover, 1999, p. 74) gives
a slightly different dissection.
Both variants have a dynamic
version .
Proof
#37
An applet by David King
that demonstrates this proof has been placed on a separate
page .
Proof
#38
This proof was also
communicated to me by David King. Squares and 2 triangles combine to produce
two hexagon of equal area, which might have been established as in Proof #9.
However, both hexagons tessellate the plane.
For every hexagon in the
left tessellation there is a hexagon in the right tessellation. Both
tessellations have the same lattice structure which is demonstrated
by an applet . The Pythagorean
theorem is proven after two triangles are removed from each of the hexagons.
Proof
#39
(By J. Barry Sutton, The
Math Gazette , v 86, n 505, March 2002, p72.)
Let in ΔABC, angle C =
90°. As usual, AB = c, AC = b, BC = a. Define points D and E on AB so that AD
= AE = b.
By construction, C lies
on the circle with center A and radius b. Angle DCE subtends its diameter and
thus is right: DCE = 90°. It follows that BCD = ACE. Since ΔACE is isosceles, CEA = ACE.
Triangles DBC and EBC
share DBC. Selain itu, BCD = BEC. Therefore, triangles DBC
and EBC are similar. We have BC/BE = BD/BC, or
Dan akhirnya
The diagram reminds one
of Thâbit
ibn Qurra's proof . But the two are quite
different. However, this is exactly proof 14 from Elisha
Loomis' collection . Furthermore, Loomis
provides two earlier references from 1925 and 1905. With the circle centered
at A drawn, Loomis repeats the proof as 82 (with references from 1887, 1880,
1859, 1792) and also lists (as proof 89) a symmetric version of the above:
For the right triangle
ABC, with right angle at C, extend AB in both directions so that AE = AC = b
and BG = BC = a. As above we now have triangles DBC and EBC similar. In
addition, triangles AFC and ACG are also similar, which results in two
identities:
Instead of using either
of the identities directly, Loomis adds the two:
which appears as both
graphical and algebraic overkill.
Proof
#40
This one is by Michael
Hardy from University of Toledo and was published in The Mathematical
Intelligencer in 1988. It must be taken with a grain of salt.
Let ABC be a right
triangle with hypotenuse BC. Denote AC = x and BC = y. Then, as C moves along
the line AC, x changes and so does y. Assume x changed by a small amount dx.
Then y changed by a small amount dy. The triangle CDE may be approximately
considered right. Assuming it is, it shares one angle (D) with triangle ABD,
and is therefore similar to the latter. This leads to the proportion x/y =
dy/dx, or a (separable) differential equation
which after integration
gives y² - x² = const. The value of the constant is determined from the
initial condition for x = 0. Since y(0) = a, y² = x² + a² for all x.
It is easy to take an
issue with this proof. What does it mean for a triangle to be approximately
right ? I can offer the following explanation. Triangles ABC and ABD are
right by construction. We have, AB² + AC² = BC² and also AB² + AD² = BD², by
the Pythagorean theorem. In terms of x and y, the theorem appears as
which, after subtraction,
gives
For small dx and dy, dx²
and dy² are even smaller and might be neglected, leading to the approximate
y·dy - x·dx = 0.
The trick in Michael's
vignette is in skipping the issue of approximation. But can one really
justify the derivation without relying on the Pythagorean theorem in the
first place? Regardless, I find it very much to my enjoyment to have the
ubiquitous equation y·dy - x·dx = 0 placed in that geometric context.
An amplified, but
apparently independent, version of this proof has been published by Mike
Staring ( Mathematics Magazine , V. 69, n. 1 (Feb., 1996), 45-46).
Assuming Δx > 0 and
detecting similar triangles,
But also,
Passing to the limit as
Δx tends to 0 + , we get
The case of Δx < 0 is
treated similarly. Now, solving the differential equation we get
The constant c is found
from the boundary condition f(0) = b: c = b². And the proof is complete.
Proof
#41
Create 3 scaled copies of
the triangle with sides a, b, c by multiplying it by a, b, and c in turn. Put
together, the three similar triangles thus obtained to form a rectangle whose
upper side is a² + b² , whereas the lower side is c².
For additional details
and modifications see a separate
page .
Proof
#42
Area of a triangle is
obviously rp, where r is the inradius and p = (a + b + c)/2 the semiperimeter
of the triangle. From the diagram, the hypothenuse c = (a - r) + (b - r), or
r = p - c. The area of the triangle then is computed in two ways:
yang setara dengan
atau
Dan akhirnya
The proof is due to Jack
Oliver, and was originally published in Mathematical Gazette 81
(March 1997), p 117-118.
Maciej Maderek informed
me that the same proof appeared in a Polish 1988 edition of Sladami
Pitagorasa by Szczepan Jelenski:
Jelenski attributes the
proof to Möllmann without mentioning a source or a date.
Proof
#43
By Larry Hoehn [ Pritchard , p. 229, and Math
Gazette ].
Apply the Power
of a Point theorem to the diagram above
where the side a serves as a tangent to a circle of radius b: (c - b)(c + b)
= a². The result follows immediately.
(The configuration here
is essentially the same as in proof
#39 . The invocation of the Power
of a Point theorem may be regarded as a
shortcut to the argument in proof
#39 . Also, this is exactly
proof XVI by BF Yanney and JA Calderhead, Am Math Monthly , v.3, n. 12
(1896), 299-300.)
John Molokach suggested a
modification based on the following diagram:
From the similarity of
triangles, a/b = (b + c)/d, so that d = b(b + c)/a. The quadrilateral on the
left is a kite with sides b and d and area 2bd/2 = bd. Adding to this the area
of the small triangle (ab/2) we obtain the area of the big triangle - (b +
c)d/2:
which simplifies to
Now using the formula for
d:
Dividing by b and
multiplying by a gives a² = c² - b². This variant comes very close to Proof
#82 , but with a different
motivation.
Finally, the argument
shows that the area of an annulus
(ring) bounded by circles of
radii b and c > b; is exactly Ï€a² where a² = c² - b². a is a half length
of the tangent to the inner circle enclosed within the outer circle.
Proof
#44
The following proof
related to #39 , have been submitted by Adam Rose (Sept. 23, 2004.)
Start with two identical
right triangles: ABC and AFE, A the intersection of BE and CF. Mark D on AB
and G on extension of AF, such that
(For further notations
refer to the above diagram.) ΔBCD is isosceles. Therefore, ∠BCD = p /2 -
α/2. Since angle C is right,
Since ∠AFE is exterior to ΔEFG, ∠AFE = ∠FEG + ∠FGE. But ΔEFG is also
isosceles. Demikian
We now have two lines, CD
and EG, crossed by CG with two alternate interior angles, ACD and AGE,
equal. Therefore, CD||EG. Triangles ACD and AGE are similar, and AD/AC =
AE/AG:
and the Pythagorean
theorem follows.
Proof
#45
This proof is due to
Douglas Rogers who came upon it in the course of his investigation into the
history of Chinese mathematics.
The proof is a variation
on #33 , #34 , and #42 . The proof proceeds in two steps. First, as it may be observed
from
a Liu
Hui identity (see also Mathematics
in China )
where d is the diameter
of the circle inscribed into a right triangle with sides a and b and
hypotenuse c. Based on that and rearranging the pieces in two ways supplies
another proof without words of the Pythagorean theorem:
Proof
#46
This proof is due to Tao
Tong ( Mathematics Teacher , Feb., 1994, Reader Reflections). I
learned of it through the good services of Douglas Rogers who also brought to
my attention Proofs #47 , #48 and #49 . In spirit, the proof resembles the proof
#32 .
Let ABC and BED be equal
right triangles, with E on AB. We are going to evaluate the area of ΔABD in
two ways:
Using the notations as
indicated in the diagram we get c(c - x)/2 = b·b/2. x = CF can be found by
noting the similarity (BD AC) of triangles BFC and ABC:
The two formulas easily
combine into the Pythagorean identity.
Proof
#47
This proof which is due
to a high school student John Kawamura was report by Chris Davis, his
geometry teacher at Head-Rouce School, Oakland, CA (Mathematics Teacher
, Apr., 2005, p. 518.)
The configuration is
virtually identical to that of Proof
#46 , but this time we are
interested in the area of the quadrilateral ABCD. Both of its perpendicular
diagonals have length c, so that its area equals c²/2. Di sisi lain,
Multiplying by 2 yields
the desired result.
Proof
#48
(WJ Dobbs, The
Mathematical Gazette , 8 (1915-1916), p. 268.)
In the diagram, two right
triangles - ABC and ADE - are equal and E is located on AB. As in President
Garfield's proof , we evaluate the area
of a trapezoid ABCD in two ways:
where, as in the proof
#47 , c·c is the product of
the two perpendicular diagonals of the quadrilateral AECD. Di sisi lain,
Combining the two we get
c²/2 = a²/2 + b²/2, or, after multiplication by 2, c² = a² + b².
Proof
#49
In the previous
proof we may proceed a little
differently. Complete a square on sides AB and AD of the two triangles. Its
area is, on one hand, b² and, on the other,
which amounts to the same
identity as before.
Douglas Rogers who
observed the relationship between the proofs 46-49 also remarked that a
square could have been drawn on the smaller legs of the two triangles if the
second triangle is drawn in the "bottom" position as in proofs 46 and 47 . In this case, we will again evaluate the area of the
quadrilateral ABCD in two ways. With a reference to the second of the diagrams
above,
as was desired.
He also pointed out that
it is possible to think of one of the right triangles as sliding from its
position in proof #46 to its position in proof #48 so that its short leg glides along the long leg of the other
triangle. At any intermediate position there is present a quadrilateral with
equal and perpendicular diagonals, so that for all positions it is possible
to construct proofs analogous to the above. The triangle always remains
inside a square of side b - the length of the long leg of the two triangles.
Now, we can also imagine the triangle ABC slide inside that square. Which
leads to a proof that directly generalizes #49 and includes configurations of proofs 46-48. Lihat di bawah.
Proof
#50
The area of the big
square KLMN is b². The square is split into 4 triangles and one
quadrilateral:
It's not an interesting
derivation, but it shows that, when confronted with a task of simplifying
algebraic expressions, multiplying through all terms as to remove all
parentheses may not be the best strategy. In this case, however, there is
even a better strategy that avoids lengthy computations altogether. On
Douglas Rogers' suggestion, complete each of the four triangles to an
appropriate rectangle:
The four rectangles
always cut off a square of size a, so that their total area is b² - a². Thus
we can finish the proof as in the other proofs of this series:
Proof
#51
(WJ Dobbs, The
Mathematical Gazette , 7 (1913-1914), p. 168.)
This one comes courtesy
of Douglas Rogers from his extensive collection. As in Proof
#2 , the triangle is rotated 90 degrees around one of its corners,
such that the angle between the hypotenuses in two positions is right. The
resulting shape of area b² is then dissected into two right triangles with
side lengths (c, c) and (ba, a+b) and areas c²/2 and (ba)(a+b)/2 = (b² -
a²)/2:
J. Elliott adds a wrinkle
to the proof by turning around one of the triangles:
Again, the area can be
computed in two ways:
yang mengurangi ke
and ultimately to the
Pythagorean identity.
Proof
#52
This proof, discovered by
a high school student, Jamie deLemos ( The Mathematics Teacher , 88
(1995), p. 79.), has been quoted by Larry Hoehn ( The Mathematics Teacher
, 90 (1997), pp. 438-441.)
On one hand, the area of
the trapezoid equals
and on the other,
Equating the two gives a²
+ b² = c².
The proof is closely
related to President
Garfield's proof .
Proof
#53
Larry Hoehn also
published the following proof ( The Mathematics Teacher , 88 (1995),
p. 168.):
Extend the leg AC of the
right triangle ABC to D so that AD = AB = c, as in the diagram. At D draw a
perpendicular to CD. At A draw a bisector of the angle BAD. Let the two lines
meet in E. Finally, let EF be perpendicular to CF.
By this construction,
triangles ABE and ADE share side AE, have other two sides equal: AD = AB, as
well as the angles formed by those sides: ∠BAE = ∠DAE. Therefore, triangles
ABE and ADE are congruent by SAS . From here, angle ABE is right.
It then follows that in
right triangles ABC and BEF angles ABC and EBF add up to 90°. Demikian
The two triangles are
similar, so that
But, EF = CD, or x = b +
c, which in combination with the above proportion gives
On the other hand, y = u
+ a, which leads to
which is easily
simplified to c² = a² + b².
Proof
#54k
Later ( The
Mathematics Teacher , 90 (1997), pp. 438-441.) Larry Hoehn took a second
look at his
proof and produced a generic
one, or rather a whole 1-parameter family of proofs, which, for various
values of the parameter, included his
older proof as well as #41 . Below I offer a simplified variant inspired by Larry's work.
To reproduce the
essential point of proof
#53 , ie having a right
angled triangle ABE and another BEF, the latter being similar to ΔABC, we may
simply place ΔBEF with sides ka, kb, kc, for some k, as shown in the diagram.
For the diagram to make sense we should restrict k so that ka≥b. (This
insures that D does not go below A.)
Now, the area of the
rectangle CDEF can be computed directly as the product of its sides ka and
(kb + a), or as the sum of areas of triangles BEF, ABE, ABC, and ADE. Thus we
get
which after
simplification reduces to
which is just one step
short of the Pythagorean proposition.
The proof works for any
value of k satisfying k≥b/a. In particular, for k = b/a we get proof
#41 . Further, k = (b + c)/a
leads to proof
#53 . Of course, we would
get the same result by representing the area of the trapezoid AEFB in two
ways. For k = 1, this would lead to President
Garfield's proof .
Obviously, dealing with a
trapezoid is less restrictive and works for any positive value of k.
Proof
#55
The following
generalization of the Pythagorean theorem is due to WJ Hazard ( Am Math
Monthly , v 36, n 1, 1929, 32-34). The proof is a slight simplification
of the published one.
Let parallelogram ABCD
inscribed into parallelogram MNPQ is shown on the left. Draw BK||MQ and
AS||MN. Let the two intersect in Y. Then
A reference to Proof
#9 shows that this is a true generalization of the Pythagorean
theorem. The diagram of Proof
#9 is obtained when both parallelograms become squares.
The proof proceeds in 4
steps. First, extend the lines as shown below.
Then, the first step is
to note that parallelograms ABCD and ABFX have equal bases and altitudes,
hence equal areas ( Euclid
I.35 In fact, they are nicely
equidecomposable .) For the same reason,
parallelograms ABFX and YBFW also have equal areas. This is step 2. On step 3
observe that parallelograms SNFW and DTSP have equal areas. (This is because
parallelograms DUCP and TENS are equal and points
E, S, H are collinear . Euclid
I.43 then implies equal areas
of parallelograms SNFW and DTSP) Finally, parallelograms DTSP and QAYK are
outright equal.
(There is a dynamic
version of the proof.)
Proof
#56
More than a hundred years
ago The American Mathematical Monthly published a series of short
notes listing great many proofs of the Pythagorean theorem. The authors, BF
Yanney and JA Calderhead, went an extra mile counting and classifying proofs
of various flavors. This and the next proof which are numbers V and VI from
their collection ( Am Math Monthly , v.3, n. 4 (1896), 110-113) give a
sample of their thoroughness. Based on the diagram below they counted as many
as 4864 different proofs. I placed a sample of their work on a separate
page .
Proof
#57
Treating the triangle a
little differently, now extending its sides instead of crossing them, BF
Yanney and JA Calderhead came up with essentially the same diagram:
Following the method they
employed in the previous proof, they again counted 4864 distinct proofs of
the Pythagorean proposition.
Proof
#58
(BF Yanney and JA
Calderhead, Am Math Monthly , v.3, n. 6/7 (1896), 169-171, #VII)
Let ABC be right angled
at C. Produce BC making BD = AB. Join AD. From E, the midpoint of CD, draw a
perpendicular meeting AD at F. Join BF. D ADC is similar to D BFE. Oleh
karena itu.
But CD = BD - BC = AB -
BC. Menggunakan
and EF = AC/2. Sehingga
which of course leads to
AB² = AC² + BC².
(As we've seen in proof 56 , Yanney and Calderhead are fond of exploiting a configuration
in as many ways as possible. Concerning the diagram of the present proof,
they note that triangles BDF, BFE, and FDE are similar, which allows them to
derive a multitude of proportions between various elements of the
configuration. They refer to their approach in proof 56 to suggest that here too there are great many proofs based on
the same diagram. They leave the actual counting to the reader.)
Proof
#59
(BF Yanney and JA
Calderhead, Am Math Monthly , v.3, n. 12 (1896), 299-300, #XVII)
Let ABC be right angled
at C and let BC = a be the shortest of the two legs. With C as a center and a
as a radius describe a circle. Let D be the intersection of AC with the
circle, and H the other one obtained by producing AC beyond C, E the
intersection of AB with the circle. Draw CL perpendicular to AB. L is the
midpoint of BE.
By the Intersecting
Chords theorem,
Dengan kata lain,
Now, the right triangles
ABC and BCL share an angle at B and are, therefore, similar, wherefrom
so that BL = a²/c.
Combining all together we see that
and ultimately the
Pythagorean identity.
Ucapan
Note that the proof fails
for an isosceles right triangle. To accommodate this case, the authors
suggest to make use of the usual method of the theory of limits. I am not at
all certain what is the "usual method" that the authors had in
mind. Perhaps, it is best to subject this case to Socratic
reasoning which is simple and does
not require the theory of limits. If the case is exceptional anyway, why not
to treat it as such.
Proof
#60
(BF Yanney and JA
Calderhead, Am Math Monthly , v.3, n. 12 (1896), 299-300, #XVIII)
The idea is the same as
before ( proof
#59 ), but now the circle
has the radius b, the length of the longer leg. Having the sides produced as
in the diagram, we get
atau
BK, which is AK - c, can
be found from the similarity of triangles ABC and AKH: AK = 2b²/c.
Note that, similar to the
previous proof, this one, too, dos not work in case of the isosceles
triangle.
Proof
#61
(BF Yanney and JA
Calderhead, Am Math Monthly , v.3, n. 12 (1896), 299-300, #XIX)
This is a third in the
family of proofs that invoke the Intersecting
Chords theorem. The radius of
the circle equals now the altitude from the right angle C. Unlike in the
other two proofs, there are now no exceptional cases. Referring to the
diagram,
Adding the three yields
the Pythagorean identity.
Proof
#62
This proof, which is due
to Floor van Lamoen, makes use of some of the many
properties of the symmedian
point . First of all, it is
known that in any triangle ABC the symmedian point K has the barycentric
coordinates proportional to the squares of the triangle's side lengths. This implies a
relationship between the areas of triangles ABK, BCK and ACK:
Next, in a right
triangle, the symmedian point is the midpoint
of the altitude to the hypotenuse. If,
therefore, the angle at C is right and CH is the altitude (and also the
symmedian) in question, AK serves as a median of ΔACH and BK as a median of
ΔBCH. Recollect now that a median cuts a triangle into two of equal areas. Dengan demikian,
Tapi
so that indeed k·c² =
k·a² + k·b², for some k > 0; and the Pythagorean identity follows.
Floor also suggested a
different approach to exploiting the properties of the symmedian point. Note
that the symmedian point is the center of gravity of three weights on A, B
and C of magnitudes a², b² and c² respectively. In the right triangle, the
foot of the altitude from C is the center of gravity of the weights on B and
C. The fact that the symmedian point is the midpoint of this altitude now
shows that a² + b² = c².
Proof
#63
This is another proof by
Floor van Lamoen; Floor has been led to the proof via Bottema's
theorem . However, the theorem
is not actually needed to carry out the proof.
In the figure, M is the
center of square ABA'B'. Triangle AB'C' is a rotation of triangle ABC. So we
see that B' lies on C'B''. Similarly, A' lies on A''C''. Both AA'' and BB''
equal a + b. Thus the distance from M to AC' as well as to B'C' is equal to (a
+ b)/2. This gives
Tapi juga:
This yields a²/4 + b²/4 =
c²/4 and the Pythagorean theorem.
The basic configuration
has been exploited by BF Yanney and JA Calderhead ( Am Math Monthly ,
v.4, n 10, (1987), 250-251) to produce several proofs based on the following
diagrams
None of their proofs made
use of the centrality of point M.
Proof
#64
And yet one
more proof by Floor van Lamoen; in
a quintessentially mathematical spirit, this time around Floor reduces the
general statement to a particular case, that of a right isosceles triangle.
The latter has been treated by Socrates and is shown
independently of the general theorem.
FH divides the square
ABCD of side a + b into two equal quadrilaterals, ABFH and CDHF. The former
consists of two equal triangles with area ab/2, and an isosceles right
triangle with area c²/2. The latter is composed of two isosceles right
triangles: one of area a²/2, the other b²/2, and a right triangle whose area
(by the introductory remark) equals ab! Removing equal areas from the two
quadrilaterals, we are left with the identity of areas: a²/2 + b²/2 = c²/2.
The idea of Socrates'
proof that the area of an isosceles right triangle with hypotenuse k equals
k²/4, has been used before, albeit implicitly. For example, Loomis,
#67 (with a reference to the
1778 edition of E. Fourrey's Curiosities Geometrique [Loomis'
spelling]) relies on the following diagram:
Triangle ABC is right at
C, while ABD is right isosceles. (Point D is the midpoint of the semicircle
with diameter AB, so that CD is the bisector of the right angle ACB.) AA' and
BB' are perpendicular to CD, and AA'CE and BB'CF are squares; in particular
EF ⊥ CD.
Triangles AA'D and DB'B
(having equal hypotenuses and complementary
angles at D) are congruent. It
follows that AA' = B'D = A'C = CE = AE. And similar for the segments equal to
B'C. Further, CD = B'C + B'D = CF + CE = EF.
Di sisi lain,
Thus the two
quadrilateral have the same area and ΔABC as the intersection. Removing ΔABC
we see that
The proof reduces to Socrates'
case , as the latter identity
is equivalent to c²/4 = a²/4 + b²/4.
More recently, Bui Quang
Tuan came up with a different argument:
From the above,
Area(BA'D) = Area(BB'C) and Area(AA'D) = Area(AB'C). Also, Area(AA'B) =
Area(AA'B'), for AA'||BB'. It thus follows that Area(ABD) = Area(AA'C) +
Area(BB'C), with the same consequences.
Proof
#65
This and the following
proof are also due to Floor
van Lamoen . Both a based on the
following lemma, which appears to generalize the Pythagorean theorem: Form
squares on the sides of the orthodiagonal quadrilateral . The squares
fall into two pairs of opposite squares. Then the sum of the areas of the
squares in two pairs are equal.
The proof is based on the
friendly
relationship between a triangle and
its flank
triangles : the altitude of a
triangle through the right angle extended beyond the vertex is the median of
the flank triangle at the right angle. With this in mind, note that the two
parallelograms in the left figure not only share the base but also have equal
altitudes. Therefore they have equal areas. Using
shearing , we see that the
squares at hand split into pairs of rectangles of equal areas, which can be
combined in two ways proving the lemma.
For the proof now imagine
two adjacent vertices of the quadrilateral closing in towards the point of
intersection of the diagonals. In the limit, the quadrilateral will become a
right triangle and one of the squares shrink to a point. Of the remaining
three squares two will add up to the third.
Proof
#66
( Floor
van Lamoen ). The lemma from Proof
65 can be used in a different way:
Let there be two squares:
APBM c and C 1 M c C 2 Q with a
common vertex M c . Rotation through 90° in the positive direction
around M c moves C 1 M c into C 2
M c and BM c into AM c . This implies that
ΔBM c C 1 rotates into ΔAM c C 2
so that AC 2 and BC 1 are orthogonal. Quadrilateral ABC
2 C 1 is thus orthodiagonal and the lemma applies: the
red and blue squares add up to the same area. The important point to note is
that the sum of the areas of the original squares APBM c and C 1
M c C 2 Q is half this quantity.
Now assume the
configurations is such that M c coincides with the point of
intersection of the diagonals. Because of the resulting symmetry, the red
squares are equal. Therefore, the areas of APBM c and C 1
M c C 2 Q add up to that of a red square!
(There is a dynamic
illustration of this argument.)
Proof
#67
This proof was sent to me
by a 14 year old Sina Shiehyan from Sabzevar, Iran. The circumcircle aside,
the combination of triangles is exactly the same as in S.
Brodie's subcase of Euclid's
VI.31 . However, Brodie's
approach if made explicit would require argument different from the one
employed by Sina. So, I believe that her derivation well qualifies as an
individual proof.
From the endpoints of the
hypotenuse AB drop perpendiculars AP and BK to the tangent to the
circumcircle of ΔABC at point C. Since OC is also perpendicular to the
tangent, C is the midpoint of KP. Oleh karena itu,
Therefore, Area(ABC) is
also Area(ABKP)/2.
Sehingga
Now all three triangles
are similar (as being right and having equal angles), their areas therefore
related as the squares of their hypotenuses, which are b, a, and c
respectively. And the theorem follows.
I have placed the
original Sina's derivation on a separate
page .
Proof
#68
The Pythagorean theorem
is a direct consequence of the Parallelogram
Law . I am grateful to Floor
van Lamoen for bringing to my attention a proof
without words for the
latter . There is a second
proof which I love even
better.
Proof #69
Twice in his proof of
I.47 Euclid used the
fact that if a parallelogram
and a triangle share the same base and are in the same parallels (I.41) , the area of the parallelogram is twice that of the triangle.
Wondering at the complexity of the setup that Euclid used to employ that
argument, Douglas Rogers came up with a significant simplification that
Euclid without a doubt would prefer if he saw it.
Let ABA'B', ACB''C', and
BCA''C'' be the squares constructed on the hypotenuse and the legs of ΔABC as
in the diagram below. As we saw in proof
63 , B' lies on C'B'' and A' on A''C''. Consider triangles BCA'
and ACB'. On one hand, one shares the base BC and is in the same parallels as
the parallelogram (a square actually) BCA''C''. The other shares the base AC
and is in the same parallels as the parallelogram ACB''C'. It thus follows by
Euclid's argument that the total area of the two triangles equals half the
sum of the areas of the two squares. Note that the squares are those
constructed on the legs of ΔABC.
On the other hand, let
MM' pass through C parallel to AB' and A'B. Then the same triangles BCA' and
ACB' share the base and are in the same parallels as parallelograms (actually
rectangles) MBA'M'and AMM'B', respectively. Again employing Euclid's
argument, the area of the triangles is half that of the rectangles, or half
that of the square ABA'B'. And we are done.
As a matter of fact, this
is one of the family of 8 proofs inserted by J. Casey in his edition of Euclid's Elements . I placed the details on a separate
page .
Now, it appears that the
argument can be simplified even further by appealing to the more basic (I.35) : Parallelograms which are on the same base and in the same
parallels equal one another. The side lines C'B'' and A'C'' meet at point
M'' that lies on MM', see, eg proof
12 and proof
24 . Then by (I.35) parallelograms AMM'B', ACM''B' and ACB''C' have equal areas and
so do parallelograms MBA'M', BA'M''C, and BC''A''C. Just what is needed.
The latter approach
reminds one of proof
37 , but does not require any rotation and does the shearing
"in place". The dynamic
version and the unfolded
variant of this proof appear on
separate pages.
In a private
correspondence, Kevin "Starfox" Arima pointed out that sliding
triangles is a more intuitive operation than shearing. Moreover, a proof
based on a rearrangement of pieces can be performed with paper and scissors,
while those that require shearing are confined to drawings or depend on
programming, eg in Java. His argument can be represented by the following
variant of both this proof and #
24 .
A dynamic
illustration is also available.
Proof
#70
Extend the altitude CH to
the hypotenuse to D: CD = AB and consider the area of the orthodiagonal
quadrilateral ACBD (similar to proofs 47 - 49 .) On one hand, its area equals half the product of its
diagonals: c²/2. On the other, it's the sum of areas of two triangles, ACD
and BCD. Drop the perpendiculars DE and DF to AC and BC. Rectangle CEDF is
has sides equal DE and DF equal to AC and BC, respectively, because for
example ΔCDE = ΔABC as both are right, have equal hypotenuse and angles. Oleh karena itu,
so that indeed c²/2 =
a²/2 + b²/2.
This is proof 20 from Loomis'
collection . In proof 29, CH is
extended upwards to D so that again CD = AB. Again the area of quadrilateral
ACBD is evaluated in two ways in exactly same manner.
Proof
#71
Let D and E be points on
the hypotenuse AB such that BD = BC and AE = AC. Let AD = x, DE = y, BE = z.
Then AC = x + y, BC = y + z, AB = x + y + z. The Pythagorean theorem is then
equivalent to the algebraic identity
Which simplifies to
To see that the latter is
true calculate the power
of point A with respect to circle
B(C), ie the circle centered at B and passing through C, in two ways: first,
as the square of the tangent AC and then as the product AD·AL:
which also simplifies to
y² = 2xz.
This is algebraic proof
101 from Loomis'
collection . Its dynamic version is
available separately.
Proof
#72
This is geometric proof
#25 from ES
Loomis' collection , for which he credits
an earlier publication by J. Versluys (1914). The proof is virtually
self-explanatory and the addition of a few lines shows a way of making it
formal.
Michel Lasvergnas came up
with an even more ransparent rearrangement (on the right below):
These two are obtained
from each other by rotating each of the squares 180° around its center.
A dynamic
version is also available.
Proof
#73
This proof is by
weininjieda from Yingkou, China who plans to become a teacher of mathematics,
Chinese and history. It was included as algebraic proof #50 in ES
Loomis' collection , for which he refers to
an earlier publication by J. Versluys (1914), where the proof is credited to
Cecil Hawkins (1909) of England.
Let CE = BC = a, CD = AC
= b, F is the intersection of DE and AB.
ΔCED = ΔABC, hence DE =
AB = c. Since, AC BD and BE AD, ED AB, as the third altitude in
ΔABD. Now from
we obtain
which implies the
Pythagorean identity.
Proof
#74
The following proof by
dissection is due to the 10 th century Persian mathematician and
astronomer Abul Wafa (Abu'l-Wafa and also Abu al-Wafa) al-Buzjani. Two equal
squares are easily combined into a bigger square in a way known
yet to Socrates . Abul Wafa method works
if the squares are different. The squares are placed to share a corner and
two sidelines. They are cut and reassembled as shown. The dissection of the
big square is almost the same as by Liu
Hui . However, the smaller
square is cut entirely differently. The decomposition of the resulting square
is practically the same as that in Proof
#3 .
A dynamic
version is also available.
Proof
#75
This an additional
application of Heron's
formula to proving the
Pythagorean theorem. Although it is much shorter than the first
one , I placed it too in a separate
file to facilitate the
comparison.
The idea is simple
enough: Heron's formula applies to the isosceles triangle depicted in the
diagram below.
Proof
#76
This is a geometric proof
#27 from ES
Loomis' collection . According to Loomis,
he received the proof in 1933 from J. Adams, The Hague. Loomis makes a remark
pointing to the uniqueness of this proof among other dissections in that all
the lines are either parallel or perpendicular to the sides of the given
triangle. Which is strange as, say, proof
#72 accomplishes they same
feat and with fewer lines at that. Even more surprisingly the latter is also
included into ES
Loomis' collection as the geometric proof
#25.
Inexplicably Loomis makes
a faulty introduction to the construction starting with the wrong division of
the hypotenuse. However, it is not difficult to surmise that the point that
makes the construction work is the foot of the right angle bisector.
A dynamic illustration is
available on a separate
page .
Proof
#77
This proof is by the
famous Dutch mathematician, astronomer and physicist Christiaan Huygens (1629
– 1695) published in 1657. It was included in Loomis'
collection as geometric proof #31.
As in Proof
#69 , the main instrument in
the proof is Euclid's
I.41 : if a parallelogram and
a triangle that share the same base and are in the same parallels (I.41) , the area of the parallelogram is twice that of the triangle.
More specifically,
Combining these with the
fact that ΔKPS = ΔANB, we immediately get the Pythagorean proposition.
(A dynamic illustration
is available on a separate
page .)
Proof
#78
This proof is by the
distinguished Dutch mathematician EW
Dijkstra (1930 – 2002). The proof
itself is, like Proof
#18 , a generalization of Proof
#6 and is based on the same diagram. Both proofs reduce to a variant of Euclid VI.31 for right triangles (with the right angle at
C). The proof aside, Dijkstra also found a remarkably fresh viewpoint on the
essence of the theorem itself:
Jika, dalam sebuah
segitiga, sudut α, β, γ terletak di seberang panjang sisi a, b, c, maka
where sign(t) is the signum function.
As in Proof
#18 , Dijkstra forms two
triangles ACL and BCN similar to the base ΔABC:
sehingga ACB = ALC = BNC. The details and
a dynamic illustration are found in a separate
page .
Proof
#79
There are several proofs
on this page that make use of the Intersecting
Chords theorem , notably proofs ## 59 , 60 , and 61 , where the circle to whose chords the theorem applied had the
radius equal to the short leg of ΔABC, the long leg and the altitude from the
right angle, respectively. Loomis'
book lists these among its
collection of algebraic proofs along with several others that derive the
Pythagorean theorem by means of the Intersecting Chords theorem applied to
chords in a fanciful variety of circles added to ΔABC. Alexandre Wajnberg
from Unité de Recherches sur l'Enseignement des Mathématiques, Université
Libre de Bruxelles came up with a variant that appears to fill an omission in
this series of proofs. The construction also looks simpler and more natural
than any listed by Loomis. Apa kejutan!
For the details, see a separate
page .
Proof
#80
A proof based on the
diagram below has been published in a letter to Mathematics Teacher
(v. 87, n. 1, January 1994) by J. Grossman. The proof has been discovered by
a pupil of his David Houston, an eighth grader at the time.
I am grateful to
Professor Grossman for bringing the proof to my attention. The proof and a
discussion appear in a separate
page , but its essence is as
follows.
Assume two copies of the
right triangle with legs a and b and hypotenuse c are placed back to back as
shown in the left diagram. The isosceles triangle so formed has
the area S = c² sin(θ) / 2. In
the right diagram, two copies of the same triangle are joined at the right
angle and embedded into a rectangle with one side equal c. Each of the
triangles has the area equal to half the area of half the rectangle, implying
that the sum of the areas of the remaining isosceles triangles also add up to
half the area of the rectangle, ie, the area of the isosceles triangle in the
left diagram. The sum of the areas of the two smaller isosceles triangles
equals
for, sin(π - θ) = sin(θ).
Since the two areas are equal and sin(θ) ≠ 0 , for a non-degenerate triangle,
a² + b² = c².
Is this a trigonometric
proof ?
Proof
#81
Philip Voets, an 18 years
old law student from Holland sent me a proof he found a few years earlier.
The proof is a combination of shearing employed in a number of other proofs
and the decomposition of a right triangle by the altitude from the right angle
into two similar pieces also used several times before. However, the
accompanying diagram does not appear among the many in Loomis'
book .
Given ΔABC with the right
angle at A, construct a square BCHI and shear it into the parallelogram BCJK,
with K on the extension of AB. Add IL perpendicular to AK. By the
construction,
On the other hand, the
area of the parallelogram BCJK equals the product of the base BK and the
altitude CA. In the right triangles BIK and BIL, BI = BC = c and ∠IBL = ∠ACB = β, making the two respectively similar and equal to ΔABC. ΔIKL is
then also similar to ΔABC, and we find BL = b and LK = a²/b. So that
We see that c² =
Area(BCJK) = a² + b² completing the proof.
Proof
#82
This proof has been
published in the American Mathematical Monthly (v. 116, n. 8, 2009,
October 2009, p. 687), with an Editor's note: Although this proof does not
appear to be widely known, it is a rediscovery of a proof that first appeared
in print in [ Loomis , pp. 26-27]. The proof has been submitted by Sang Woo Ryoo,
student, Carlisle High School, Carlisle, PA.
Loomis takes credit for
the proof, although Monthly's editor traces its origin to a 1896 paper by BF
Yanney and JA Calderhead ( Monthly , v. 3, p. 65-67.)
Draw AD, the angle
bisector of angle A, and DE perpendicular to AB. Let, as usual, AB = c, BC =
a, and AC = b. Let CD = DE = x. Then BD = a - x and BE = c - b. Triangles ABC
and DBE are similar, leading to x/(a - x) = b/c, or x = ab/(b + c). But also
(c - b)/x = a/b, implying c - b = ax/b = a²/(b + c). Which leads to (c - b)(c
+ b) = a² and the Pythagorean identity.
Proof
#83
This proof is a slight
modification of the proof sent to me by Jan Stevens from Chalmers University of
Technology and Göteborg University. The proof is actually of Dijkstra's
generalization and is based on the extension
of the construction in proof
#41 .
The details can be found
on a separate
page .
Proof
#84
Elisha Loomis, myself and
no doubt many others believed and still believe that no trigonometric proof
of the Pythagorean theorem is possible. This belief stemmed from the
assumption that any such proof would rely on the most fundamental of
trigonometric identities sin²Î± + cos²Î± = 1 is nothing but a reformulation of
the Pythagorean theorem proper. Now, Jason
Zimba showed that the theorem can be
derived from the subtraction
formulas for sine and cosine
without a recourse to sin²Î± + cos²Î± = 1. I happily admit to being in the
wrong.
Jason Zimba's proof
appears on a separate
page.
Proof
#85
Bui Quang Tuan found a
way to derive the Pythagorean Theorem from the Broken
Chord Theorem .
For the details, see a separate
page .
Proof
#86
Bui Quang Tuan also
showed a way to derive the Pythagorean Theorem from Bottema's
Theorem .
For the details, see a separate
page .
Proof
#87
John Molokach came up
with a proof of the Pythagorean theorem based on the following diagram:
If any proof deserves to
be called algebraic this one does. For the details, see a separate
page .
Proof
#88
Stuart Anderson gave
another derivation of the Pythagorean theorem from the Broken
Chord Theorem . The proof is
illustrated by the inscribed (and a little distorted) Star of David:
For the details, see a separate
page . The reasoning is about
the same as in Proof
#79 but arrived at via the Broken
Chord Theorem .
Proof
#89
John Molokach, a devoted
Pythagorean, found what he called a Parallelogram proof of the
theorem. It is based on the following diagram:
For the details, see a separate
page .
Proof
#90
John has also committed
an unspeakable heresy by devising a proof based on solving a differential
equation. After a prolonged deliberation between Alexander Givental of
Berkeley, Wayne Bishop of California State University, John and me, it was
decided that the proof contains no vicious circle as was initially expected
by every one.
For the details, see a separate
page .
Proof
#91
John Molokach also
observed that the Pythagorean theorem follows from Gauss' Shoelace Formula:
For the details, see a separate
page .
Proof
#92
A proof due to Gaetano
Speranza is based on the following diagram
For the details and an
interactive illustration, see a separate
page .
Referensi
|
Wednesday, March 7, 2012
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment